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➢ Boundary layer acceleration (Magnus effect) causes delayed stall

➢ Laminar separation bubble bursting

➢ Formation of dynamic stall vortex and propagation

➢ This involves highly non-linear behavior that requires numerical investigations

➢ Existing RANS models need to be improved to better characterize dynamic stall

Dynamic Stall
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Dynamic Stall

NACA 0012 𝑅𝑒 = 200,000 Ω = 2.86°/𝑠
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Dynamic Stall

NACA 0015

𝑅𝑒 = 200,000

Ω0
+ =

Ω0𝑐

𝑈
= −0.05

LES data is reproduced from: “Sharma and Visbal, Numerical investigation of the effect of airfoil thickness on onset of dynamic stall, JFM, 2019”
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Research Objective

➢ Develop data-driven turbulence and transition models using steady-state data sets

➢ Evaluate the trained models on steady aerodynamic cases

➢ Test the trained models on the pitching airfoil problem
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Data-Driven Modeling

Data-driven 

modeling

Uncertainty 

quantification 

and modeling Tensor based 

neural networks 

(TBNN)
Symbolic 

regression

Field Inversion 

and machine 

learning

➢ Scale resolving simulations (e.g. DNS and LES) are computationally expensive due to mesh and 

time resolution requirements

➢ Low fidelity cost-effective turbulence models (e.g. RANS) lack accuracy in non-equilibrium 

boundary layer flows and separated flows

➢ Laminar-to-turbulent transition even adds more uncertainty
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Field Inversion and Machine Learning (FIML)

➢ Initially proposed by Karthik Duraisamy in 2014*

➢ Can work with limited data and is consistent with the predictive context

➢ Consists of three main steps:

 1. Insert a corrective (discrepancy) field in the turbulence model

𝜕 ҧ𝜌𝜔
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+

𝜕𝑈𝑗𝜔

𝜕𝑥𝑗
= 𝛽(𝑥)𝐶𝜔1

𝜔

𝑘
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𝜕
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𝜇 + 𝜎𝜔𝜇𝑇

𝜕𝜔

𝜕𝑥𝑗

 2. Solve the inverse problem (optimization) to find 𝛽(x) that minimizes the   

 discrepancy between the model and high-fidelity data (field inversion)

 3.  Use a machine learning algorithm to train 𝛽(𝑥) against flow features

K. Duraisamy and P. Durbin “Transition modeling using data-driven approaches, Center for Turbulence Research Proceedings of the Summer Program, 2014”
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Data-Driven Transition Model

➢ Transition occurs through different mechanisms (natural, by-pass, separation induced, ..etc)

➢ FIML has been applied extensively to enhance RANS models for turbulent flows

➢ Less application to transition flows specially separation induced transition

➢ Two methods are proposed here:

 1. Inferring the discrepancy field in a transition transport model

 2. Inferring the intermittency field in a turbulence model (algebraic transition model)
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Data-Driven Laminar Kinetic Energy Model (LKE)

➢ The baseline model follows the implementation Pacciani 𝑒𝑡 𝑎𝑙. (2011)1 which has been 

previously used for data-driven modeling using symbolic regression2
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(Production limiter)
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Transfer

𝑅 = 𝐶2𝑓2𝛽∗𝑓2𝜔𝑘𝑙

1. R. Pacciani, M. Marconcini, A. Fadai-Ghotbi, S. Lardeau, and M. Leschziner  “Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model, 2011”

2. Y. Fang, Y. Zhao, H. Akolekar, A. Sandberg, and R. Marconcini  A data-driven approach for generalizing the laminar kinetic energy model for separation and bypass transition in low- and high-pressure 

turbines”, 2023
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Data-Driven Algebraic Transition Model 
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➢ The underlying 𝑘 − 𝜔 SST model needs some running length to produce turbulent kinetic at 

low turbulent intensities and separation induced transition

➢ Hence, 𝛽 is allowed to increase beyond the value of 1
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Discrete Adjoint Method

➢ Objective function:

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛[෍
𝑤𝑎𝑙𝑙

𝜏𝑤
𝑅𝐴𝑁𝑆 − 𝜏𝑤

𝑑𝑎𝑡𝑎 2
− ෍

𝑓𝑙𝑜𝑤
𝜆 𝛽 − 1 2]

➢ DAFoam is used for field inversion

➢ An open-source code that inherits the OpenFOAM environment

➢ Equipped with the mechanics needed to:

1- Formulate the  adjoint eqns.

2- Evaluate the partial derivatives using automatic differentiation

3- Solve the adjoint system of eqns.
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Case 1: Flate Plate with Separation Induced Transition

𝑈𝑖𝑛 = 0.9 m/s 𝜈 = 1.5 × 10−5

𝑇𝑢1 = 5.8% 𝑇𝑢2 = 7.5%

Cells: 𝑛𝑥 = 149 𝑛𝑦 = 99

High-fidelity data: LES data by Lardeau et al. (2012) 
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Case 2: NACA 0012 Airfoil Series

𝑈𝑖𝑛 = 1 m/s 𝑅𝑒 = 200,000

𝑇𝑢𝑖𝑛 = 1% 𝛼 = 4°, 8°, 10°, 12° 

Cells: 𝑛𝑤𝑎𝑙𝑙 = 887 𝑛𝑛𝑜𝑟𝑚𝑎𝑙 = 180

High-fidelity data: Conducted LES
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Results: Flat Plate 

𝑇𝑢 = 5.8% 𝑇𝑢 = 7.5%

Surface data is used up to just beyond the reattachment point
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Results: Flat Plate 

𝑇𝑢 = 5.8% 𝑇𝑢 = 7.5%

Entire surface data is used
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Results: Flat Plate 

Field inversion for LKE at 𝑇𝑢 = 5.8%

Field inversion for 𝑘 − 𝜔 SST at 𝑇𝑢 = 5.8%
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Results: Flat Plate 

Field inversion for LKE at 𝑇𝑢 = 7.5%

Field inversion for 𝑘 − 𝜔 SST at 𝑇𝑢 = 7.5%
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Results: NACA 0012-𝛼 = 4
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Results: NACA 0012-𝛼 = 4
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Results: NACA 0012-𝛼 = 4
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Results: NACA 0012-𝛼 =8
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Results: NACA 0012-𝛼 =8
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Results: NACA 0012-𝛼 =10
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Results: NACA 0012-𝛼 = 10
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Results: NACA 0012-𝛼 =12
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Results: NACA 0012-𝛼 = 12



Aerospace Engineering Department 27

Conclusion and Future Work

➢ Field inversion has been shown to be effective for data-driven modeling

➢ Both models were able to fit with the high-fidelity data for the flat plate with FAPG case

➢ The algebraic model showed better convergence for the airfoil case

➢ The field inversion data serves as input to train ML transition models

➢ Trained models will be applied to steady and unsteady aerodynamic problems

➢ Training models for fully turbulent flows will be considered
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TSFP13

➢ This work has been presented at the 13th international symposium on turbulence and shear 

flow phenomena (TSFP13) that was held in late June 2024 accompanied with a full paper.
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