IOWA STATE UNIVERSITY

Aerospace Engineering Department

ENHANCED RANS MODELING OF SEPARATION-INDUCED TRANSITIONAL FLOWS USING FIELD INVERSION

Karim Ahmed Dylan Sitarski

Advisors: Prof. Paul Durbin Prof. Anupam Sharma

Dynamic Stall

- ➢ Boundary layer acceleration (Magnus effect) causes delayed stall
- \triangleright Laminar separation bubble bursting
- \triangleright Formation of dynamic stall vortex and propagation
- \triangleright This involves highly non-linear behavior that requires numerical investigations
- ➢ Existing RANS models need to be improved to better characterize dynamic stall

Dynamic Stall

NACA 0012 $Re = 200,000 \qquad \Omega = 2.86^{\circ}/s$

Dynamic Stall

LES data is reproduced from: "Sharma and Visbal, Numerical investigation of the effect of airfoil thickness on onset of dynamic stall, JFM, 2019"

Research Objective

➢ Develop data-driven turbulence and transition models using steady-state data sets

- \triangleright Evaluate the trained models on steady aerodynamic cases
- ➢ Test the trained models on the pitching airfoil problem

Data-Driven Modeling

- ➢ Scale resolving simulations (e.g. DNS and LES) are computationally expensive due to mesh and time resolution requirements
- ➢ Low fidelity cost-effective turbulence models (e.g. RANS) lack accuracy in non-equilibrium boundary layer flows and separated flows
- \triangleright Laminar-to-turbulent transition even adds more uncertainty

Field Inversion and Machine Learning (FIML)

- \triangleright Initially proposed by Karthik Duraisamy in 2014^{*}
- \triangleright Can work with limited data and is consistent with the predictive context
- \triangleright Consists of three main steps:
	- 1. Insert a corrective (discrepancy) field in the turbulence model

$$
\frac{\partial \bar{\rho}\omega}{\partial t} + \frac{\partial \overline{U_j}\omega}{\partial x_j} = \beta(x)C_{\omega 1}\frac{\omega}{k}P - C_{\omega 2}\bar{\rho}\omega^2 + \frac{\partial}{\partial x_j}\left[(\mu + \sigma_\omega\mu_T)\frac{\partial \omega}{\partial x_j} \right]
$$

2. Solve the inverse problem (optimization) to find $\beta(x)$ that minimizes the discrepancy between the model and high-fidelity data (field inversion)

3. Use a machine learning algorithm to train $\beta(x)$ against flow features

K. Duraisamy and P. Durbin "Transition modeling using data-driven approaches, Center for Turbulence Research Proceedings of the Summer Program, 2014"

Data-Driven Transition Model

- ➢ Transition occurs through different mechanisms (natural, by-pass, separation induced, ..etc)
- ➢ FIML has been applied extensively to enhance RANS models for turbulent flows
- \triangleright Less application to transition flows specially separation induced transition
- \triangleright Two methods are proposed here:
- 1. Inferring the discrepancy field in a transition transport model
- 2. Inferring the intermittency field in a turbulence model (algebraic transition model)

Data-Driven Laminar Kinetic Energy Model (LKE)

 \triangleright The baseline model follows the implementation Pacciani *et al.* (2011)¹ which has been previously used for data-driven modeling using symbolic regression²

$$
\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = F_\mu P_k - C_\mu k \omega + R + \frac{\partial}{\partial x_j} \left[\left(v + \frac{v_T}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right]
$$

\n
$$
P_k = \min(2v_T \frac{\partial U_i}{\partial x_j} S_{ij}, \frac{kS}{\sqrt{6}})
$$
 (Production limiter)
\n
$$
F_{mu} = \frac{\frac{1}{40} + \frac{Re_T}{6}}{1 + \frac{Re_T}{6}}
$$
 $Re_T = \frac{v_T}{v}$ (Damping function)
\n
$$
\frac{\partial \omega}{\partial t} + U_j \frac{\partial \omega}{\partial x_j} = 2C_{\omega_1} F_\mu |S|^2 - C_{\omega_2} \omega^2 + \frac{\partial}{\partial x_j} \left[\left(v + \frac{v_T}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} \right]
$$

\n
$$
\frac{\partial k_l}{\partial t} + U_j \frac{\partial k_l}{\partial x_j} = \beta P_l - \varepsilon_l - R + \frac{\partial}{\partial x_j} \left(v \frac{\partial k_l}{\partial x_j} \right)
$$

- 1. R. Pacciani, M. Marconcini, A. Fadai-Ghotbi, S. Lardeau, and M. Leschziner "Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model, 2011"
- 2. Y. Fang, Y. Zhao, H. Akolekar, A. Sandberg, and R. Marconcini A data-driven approach for generalizing the laminar kinetic energy model for separation and bypass transition in low- and high-pressure turbines", 2023

Data-Driven Algebraic Transition Model

$$
\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = \beta P_k - C_\mu k \omega + \frac{\partial}{\partial x_j} \left[\left(\nu + \frac{\nu_T}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right]
$$

$$
\frac{\partial \omega}{\partial t} + U_j \frac{\partial \omega}{\partial x_j} = \frac{C_{\omega_1}}{v_t} P_k - C_{\omega_2} \omega^2 + \frac{\partial}{\partial x_j} \left[\left(v + \frac{v_T}{\sigma_\omega} \right) \frac{\partial \omega}{\partial x_j} \right] + \frac{2(1 - F_1) \sigma_{\omega_2}}{\omega} \frac{\partial k}{\partial x_j} \frac{\partial \omega}{\partial x_j}
$$

 $\beta = 0$ (Laminar) $\beta = 1$ (Turbulent)

- \triangleright The underlying $k \omega$ SST model needs some running length to produce turbulent kinetic at low turbulent intensities and separation induced transition
- \triangleright Hence, β is allowed to increase beyond the value of 1

Discrete Adjoint Method

➢ Objective function:

$$
\beta = argmin[\sum_{wall} (\tau_w^{RANS} - \tau_w^{data})^2 - \sum_{flow} \lambda(\beta - 1)^2]
$$

- \triangleright DAFoam is used for field inversion
- \triangleright An open-source code that inherits the OpenFOAM environment
- \triangleright Equipped with the mechanics needed to:
- 1- Formulate the adjoint eqns.
- 2- Evaluate the partial derivatives using automatic differentiation
- 3- Solve the adjoint system of eqns.

Case 1: Flate Plate with Separation Induced Transition

 $U_{in} = 0.9$ m/s $v = 1.5 \times 10^{-5}$

 $Tu_1 = 5.8\%$ $Tu_2 = 7.5\%$

Cells: $n_x = 149$ $n_y = 99$

High-fidelity data: LES data by Lardeau et al. (2012)

Case 2: NACA 0012 Airfoil Series

 $U_{in} = 1$ m/s $Re = 200,000$

 $Tu_{in} = 1\%$ $\alpha = 4^{\circ}, 8^{\circ}, 10^{\circ}, 12^{\circ}$

Cells: $n_{wall} = 887$ $n_{normal} = 180$

High-fidelity data: Conducted LES

Surface data is used up to just beyond the reattachment point

Entire surface data is used

Field inversion for $k - \omega$ SST at $Tu = 5.8\%$

IOWA STATE UNIVERSITY

 $\frac{\beta}{2.0}$

 -1.5

 -0.5

 -0.0

Field inversion for $k - \omega$ SST at $Tu = 7.5\%$

Conclusion and Future Work

- ➢ Field inversion has been shown to be effective for data-driven modeling
- \triangleright Both models were able to fit with the high-fidelity data for the flat plate with FAPG case

 \triangleright The algebraic model showed better convergence for the airfoil case

 \triangleright The field inversion data serves as input to train ML transition models

➢ Trained models will be applied to steady and unsteady aerodynamic problems

➢ Training models for fully turbulent flows will be considered

TSFP13

 \triangleright This work has been presented at the 13th international symposium on turbulence and shear flow phenomena (TSFP13) that was held in late June 2024 accompanied with a full paper.