Ducted hydrokinetic turbine design optimization using DAFoam

07.25.2024

Outline

- Problem statement
- Work 1: Thin-walled ducted turbine optimization
 - Free-Form Deformation (FFD)
- Work 2: Foil-shaped ducted turbine optimization
 - Engineering Sketch Pad (ESP)

Hydrokinetic turbine

- Device that extracts energy from natural water flows
- Various types
 - Horizontal-axis
 - Popular benchmark: Bahaj turbine (efficiency: 46%)
 - Vertical-axis (cross-flow)
 - Oscillating foil

A.S. Bahaj, A.F. Molland, J.R. Chaplin, W.M.J. Batten, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, Renewable Energy, Volume 32, Issue 3, 2007, Pages 407-426, ISSN 0960-1481

Improving efficiency of turbines

- Betz limit from 1D momentum theory
 - mass, momentum conservation + Bernoulli
 - Efficiency limited by 59.3%

- Introducing 'Duct'
 - Accelerate & condition fluid flow
 - Improve overall energy extraction efficiency

Motivation and goal

- No substantial evidence provided for the effects of ducts
- Difficult analytical explanation
 - Experimental/computational approaches are necessary
- Lack of systematic optimization with high-fidelity approach
 - Find an efficient ducted turbine design Corroborate the benefit of using a duct
 - Design optimization using DAFoam

Physical problem

- Find efficient horizontal-axis ducted turbine design
 - Given U_{∞} and Ω

• Measure *C_P* with maximum frontal area of a whole device

Optimization problem

maximize C_P

by varying $-30^{\circ} \le \{\theta_i\}_{i=1}^8 \le 30^{\circ}$, Blade twists $0.8 \le \left\{\frac{b_i}{b_i^B}\right\}_{i=1}^8 \le 1.2$, Blade section scales $0 \le d_3 \le \{d_j\}_{j=1,2,4} \le D_{\text{exit}}$, Duct/blade radial scales $0.3 \le \frac{l}{l^B} \le 1.5$, Duct axial scale subject to $\frac{2R}{d_3} = 0.91$, Tip gap ratio

Thin-walled ducted turbine baseline design

- Baseline C_P
 - Design A: $C_P \sim 28\%$
 - Design B: $C_P \sim 45\%$
- Blades: Bahaj et al. [2007] turbine
 - Original twist profile (Design A)
 - Modified twist profile (Design B)
 - No hub included
- Duct: Knight et al. [2018]
 - Thin wall

Ducted turbine FFD setup

- 2 Layers of FFD boxes:
 - Parent box
 - FFD points control Radial scale (black)
 - \rightarrow Blade and duct throat radii scales together, keeping the same tip gap ratio
 - \rightarrow Last 3 sections densely located at exit to fix the exit radius
 - Children box
 - FFD points control Duct length (red)
 - FFD points control Blade geometry (blue)

Design variable change through FFD

Duct

Blade

(c) Blade section scales

(a) Duct radial scales. Expansion and contraction

(b) Duct length scale. Elongation and shortening

CFD simulation

: Turbine rotation modeling

- Steady RANS + Multiple Reference Frame method (MRF)
 - Multiple coordinate systems
 - Efficient, fair accuracy
 - Low-fidelity approach

- Unsteady RANS + Arbitrary Mesh Interface (AMI)
 - Rotating-sliding mesh
 - Computational mesh rotation at each time step
 - Relatively accurate, expensive
 - High-fidelity approach

Ducted turbine optimization setup

		OPT A (from 28%)	OPT B (from 45%)	
Baseline	Blade	Original-twist Bahaj	Twist-modified Bahaj	
Design	Duct	Thin-walled duct from Knight et al. [2018]		
Objective		Maximize C_P @ fixed U_∞ & Ω		
Design variables	Blade	Root pitch/ twists/ chords (16 vars)		
	Duct	Length / radii (5 vars)		
Constraints		Fixed blade-duct gap ratio		

A.S. Bahaj, A.F. Molland, J.R. Chaplin, W.M.J. Batten, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank, Renewable Energy, Volume 32, Issue 3, 2007, Pages 407-426, ISSN 0960-1481 Knight B, Freda R, Young YL, Maki K. Coupling Numerical Methods and Analytical Models for Ducted Turbines to Evaluate Designs. *Journal of Marine Science and Engineering*. 2018; 6(2):43. htt ps://doi.org/10.3390/jmse6020043

12

Optimization process

Optimization results: C_P

Design A					
	Num of cells	y ⁺ Blade	y ⁺ Duct	C_P	
M0	2,741,276	47.75	200.2	0.5462	
M1	4,697,325	40.82	191.1	0.5511	
M2	7,280,862	33.30	147.7	0.5381	

		Design B		
	Num of cells	y ⁺ Blade	y ⁺ Duct	C_P
M0	3,066,956	49.32	221.1	0.5287
M1	5,358,847	40.81	173.5	0.5335
M2	8,453,165	34.33	155.4	0.5337

Re-evaluation (URANS + AMI) + $k - \omega$ SST

- Optimizations started from different starting points converge to very similar C_P
- Re-evaluation
 - Optimization A: 0.2759 ($\lambda = 5.5$) $\rightarrow 0.5381$ ($\lambda = 6.39$)
 - Optimization B: $0.4508 \ (\lambda = 5.5) \rightarrow 0.5337 \ (\lambda = 6.18)$

Optimization results

: comparison with unducted turbines

Ducted turbines can outperform unducted turbines for a range of TSRs

Optimization results: geometry

- Duct
 - *C_P* is more sensitive to the throat radius
 - Opt A) 0.409*L*, 1.165*R*_{throat}
 - Opt B) 0.641*L*, 1.155*R*_{throat}

- Blades
 - Radii are scaled with the throat radii
 - Converge to the same twist profile (> 0.35R)

Summary of work 1

- Design optimization of thin-walled ducted hydrokinetic turbines is conducted
- Optimizations from different baselines converge to similar result
 - $C_P \sim 54\%$ (URANS solver)
 - Similar geometrical features: duct throat area, blade twist profile (> 0.35R)
- Ducted turbine can outperform unducted turbine for a given area
 - Ducted $C_P \sim 54\%$ vs. unducted $C_P \sim 47\%$
- Further improvement is needed

Further improvement is needed

- Thin-walled duct
 - Difficult to maintain a circular and axisymmetric shape
- No hub included
 - Complex setup is needed (Hajdik et al. 2023)

Engineering Sketch Pad (ESP)

- CAD-based geometry creation and manipulation system
- Geometry parameters can be directly used as design variables
 - Example of parametric design

Design variables: Points locations (duct shape is a cubic spline curve)

Design variables: NACA foil thickness, camber, chord length, blade radius, hub radius, tip gap, etc.

Baseline ducted turbine design

- Blade geometry
 - Twist/chord from previous optimization
 - 9 spanwise sections Class-Shape function Transformation (CST)
- Hub geometry
 - Cylinder + Sphere + Cone with slight modification
- Duct geometry
 - Stretched E423 foil
 - CST parametrization

 $M_{111} \rightarrow$

Kulfan, Brenda, and John Bussoletti. "" Fundamental" parameteric geometry representations for aircraft component shapes." In 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, p. 6948. 2006.

Baseline ducted turbine design

21

Design variable change through ESP

- Blade
 - (a) Twists(b) Chords
- Hub

(C) Duct shape

Duct

Constraints

Duct thickness: 1D thickness constraint

• Tip gap: proximity constraint

- Duct exit radius
- Duct LE curvature
- Hub cylindrical part

Optimization setup

Baseline design			
Objective		Maximize C_P @ fixed U_∞ & Ω	
Design variables	Turbine	Radius/ Chords/ Twists/ Hub shape (13 vars)	
	Duct	Duct shape, Duct scale, Angle of attack (13 vars)	
Constraints		Duct thickness Tip gap	

Optimization setup

Optimization results: C_P

- Optimization: $0.3011 (\lambda = 4.86) \rightarrow 0.5009 (\lambda = 4.65)$
- Plan to run re-evaluation using URANS-AMI

Optimization result

- Duct
 - Shorter
 - Thin and cambered
- Hub

- Blade
 - Smaller radius
 - **Bigger chords**

Summary of work 2

- Design optimization of a ducted turbine featuring a foil-shaped duct and a bulky hub is conducted
 - Geometry is parametrized using ESP
- Obtained ducted turbine has roughly 50% efficiency with unique geometrical features
- Further re-evaluation is needed

Q&A