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Outline

= Problem statement

= Work 1: Thin-walled ducted turbine optimization
* Free-Form Deformation (FFD)

» Work 2: Foil-shaped ducted turbine optimization
= Engineering Sketch Pad (ESP)



Hydrokinetic turbine

= Device that extracts energy from natural water flows

» Various types
= Horizontal-axis
= Popular benchmark: Bahaj turbine (efficiency: 46%)
= Vertical-axis (cross-flow)
= QOscillating foil

Water currents

A.S. Bahaj, A.F. Molland, J.R. Chaplin, W.M.J. Batten, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing 3
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Improving efficiency of turbines

= Betz limit from 1D momentum theory

mass, momentum conservation + Bernoulli
Efficiency limited by 59.3%

* |ntroducing ‘Duct’

Accelerate & condition fluid flow
Improve overall energy extraction efficiency
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Motivation and goal

= No substantial evidence provided for the effects of ducts

= Difficult analytical explanation
= Experimental/computational approaches are necessary

» Lack of systematic optimization with high-fidelity approach

—> Find an efficient ducted turbine design
Corroborate the benefit of using a duct

—>  Design optimization using DAFoam



Physical problem

* Find efficient horizontal-axis ducted turbine design
= Given U, and (2

: . . . . Extracted power QN
= measuring Power coefficient (efficiency): Cp = , , =7
Available power in flow P ud A

OR
= which is a function of Tip Speed Ratio: A = —

o0

» Measure Cp with maximum frontal area of a whole device
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(a) Unducted turbine (b) Ducted turbine



Optimization problem

maximize Cp

by varying —30° < {91'}?_1 < 30°, Blade twists
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(b) Duct length change. Elongation and shoriening



Thin-walled ducted turbine baseline design

= Baseline Cp
= Design A: Cp ~ 28% 1
= Design B: Cp ~45%

« Blades: Bahaj et al. [2007] turbine im0 T issem

(a) Different views of baseline ducted turbine

= Qriginal twist profile (Design A)

= Modified twist profile (Design B) |
= No hub included |
_‘E Baseline design B
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(b) Twist distributions of baseline designs A and B



Ducted turbine FFD setup

= 2 Layers of FFD boxes:
= Parent box
= FFD points control — Radial scale (black)
— Blade and duct throat radii scales together, keeping the same tip gap ratio
— Last 3 sections densely located at exit to fix the exit radius

=  Children box

= FFD points control - Duct length (red)
= FFD points control - Blade geometry (blue)




Design variable change through FFD
= Blade = Duct

(a) Root pitch (a) Duct radial scales. Expansion and contraction
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(b) Twists
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(c) Blade section scales
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CFD simulation
: Turbine rotation modeling

= Steady RANS + Multiple Reference Frame method (MRF)
= Multiple coordinate systems
» Efficient, fair accuracy
» Low-fidelity approach

—» Optimization
Earth fixed coordinate system

. . ; Blade fixed coordinate system
in stationary region

in rotating region

= Unsteady RANS + Arbitrary Mesh Interface (AMI) <MRF method>
= Rotating-sliding mesh
= Computational mesh rotation at each time step
= Relatively accurate, expensive
» High-fidelity approach

-—» Re-evaluation

<AMI method> 11



Ducted turbine optimization setup

OPT A (from 28%) OPT B (from 45%)
Baseline Blade Original-twist Bahaj Twist-modified Bahaj
Design Duct Thin-walled duct from Knight et al. [2018]
Objective Maximize C, @ fixed Uy, & 12
Design Blade Root pitch/ twists/ chords (16 vars)
variables Duct Length / radii (5 vars)
Constraints Fixed blade-duct gap ratio

Fixed

8 sections spanwise
(twists, chords)

7 sections (radii)
A.S. Bahaj, A.F. Molland, J.R. Chaplin, W.M.J. Batten, Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing
tank, Renewable Energy, Volume 32, Issue 3, 2007, Pages 407-426, ISSN 0960-1481
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Optimization process

Baseline
design

Optimization

> Surface Geometry Parameterization
using Free-Form Deformation (FFD)

Geometry Update > Steady RANS
& Mesh Deformation + Multiple Reference Frame (MRF)
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Optimization
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Iteration
Optimization (steady RANS + MRF)
+ SA model

Design A
Num of cells y' Blade y' Duct Cp
MO 2,741,276 47.775 200.2 0.5462
M1 4,697,325 40.82 191.1 0.5511
M2 7,280,862 33.30 147.7 (0.5381
Design B
Num of cells y' Blade y' Duct Cp
MO 3,066,956 49 .32 221.1 0.5287
M1 5,358,847 40.81 173.5 0.5335
M2 8,453,165 34.33 155.4 0.5337

Re-evaluation (URANS + AMI)
+ k — w SST

Optimizations started from different starting points converge to very similar Cp

Re-evaluation
Optimization A: 0.2759 (1 = 5.5) - 0.5381 (1 = 6.39)
Optimization B: 0.4508 (A = 5.5) — 0.5337 (1 = 6.18)
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Optimization results
: comparison with unducted turbines

» Ducted turbines can outperform unducted turbines for a range of TSRs
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Optimization results: geometry

= Duct

Cp is more sensitive to the throat radius
OptA) 0.409L, 1.165R:hr0qt
Opt B) 0.641L, 1.155R:p,pat
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Duct baseline
Optimized design A
Optimized design B

= Blades
= Radii are scaled with the throat radii
= Converge to the same twist profile (> 0.35R)
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Summary of work 1

» Design optimization of thin-walled ducted hydrokinetic turbines is conducted

» Optimizations from different baselines converge to similar result
» (Cp ~54% (URANS solver)
»  Similar geometrical features: duct throat area, blade twist profile (> 0.35R)

» Ducted turbine can outperform unducted turbine for a given area
* Ducted Cp ~54% vs. unducted Cp ~47%

= Further improvement is needed
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Further improvement is needed

* Thin-walled duct
= Difficult to maintain a circular and axisymmetric shape

* No hub included
= Complex setup is needed (Hajdik et al. 2023)
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Engineering Sketch Pad (ESP)

» CAD-based geometry creation and manipulation system
= Geometry parameters can be directly used as design variables

= Example of parametric design

Design variables:
NACA foil thickness, camber, chord length,
blade radius, hub radius, tip gap, etc.

Design variables: Points locations
(duct shape is a cubic spline curve)
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Baseline ducted turbine design

= Blade geometry
= Twist/chord from previous optimization ”’ —_
= 9 spanwise sections — Class-Shape function Transformation (CST) ' ' ' '

» Hub geometry

» Cylinder + Sphere + Cone with slight modification O
= Duct geometry
=  Stretched E423 foil

= CST parametrization

P B e e
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Kulfan, Brenda, and John Bussoletti.
conference, p. 6948. 2006.



Baseline ducted turbine design
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Design variable change through ESP
= Blade = Duct

(@) Twists %\\\N | g ____—

b) Angle of attack

) Duct shape
" Fub w
(a) Translations of 4 points
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Constraints

=  Duct thickness: 1D thickness constraint

-
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= Tip gap: proximity constraint

= Duct exit radius
= Duct LE curvature
= Hub cylindrical part
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Optimization setup

Baseline design

Objective Maximize C, @ fixed Uy, & 2
) Turbine Radius/ Chords/ Twists/ Hub shape (13 vars)
Design
variables
Duct Duct shape, Duct scale, Angle of attack (13 vars)

Constraints

Duct thickness
Tip gap
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Optimization setup

Optimization
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Unsteady RANS
+ Arbitrary Mesh Interface (AMI)
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Optimization results: Cp

=  Optimization: 0.3011 (1 = 4.86) — 0.5009 (1 = 4.65)
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Optimization result

= Duct = Blade
=  Shorter = Smaller radius
= Thin and cambered = Bigger chords
= Hub
= Longer 4]
= Protruded R

o

= Bigger chords
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Summary of work 2

Design optimization of a ducted turbine featuring a foil-shaped duct and a bulky hub is conducted
» Geometry is parametrized using ESP

Obtained ducted turbine has roughly 50% efficiency with unique geometrical features

Further re-evaluation is needed
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Q&A
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